Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase.
نویسندگان
چکیده
TDG (thymine DNA glycosylase) is an essential multifunctional enzyme involved in DNA base excision repair, DNA demethylation and transcription regulation. TDG is the predominant enzyme that removes thymine from T/G mispair, which arises due to deamination of 5-methyl-cytosine at the CpG dinucleotide, thereby preventing C to T mutations. SIRT1 is a member of class III NAD+-dependent histone/protein deacetylases. In the present study, we demonstrate that SIRT1 interacts with residues 67-110 of hTDG (human TDG). In addition, SIRT1 enhances TDG glycosylase activity and deacetylates acetylated TDG. TDG acetylation weakens its interaction with SIRT1. Although acetylated TDG has reduced glycosylase activity towards T/G, 5-formylcytosine/G and 5-carboxylcytosine/G, it has a stronger activity towards a 5-fluorouracil/G substrate as compared with unmodified TDG. SIRT1 weakly stimulates acetylated hTDG activity towards T/G, 5-formylcytosine/G and 5-carboxylcytosine/G as compared with control hTDG. Sirt1-knockout mouse embryonic fibroblast cells have higher levels of TDG expression and acetylation. The physical and functional interactions between SIRT1 and TDG may mediate DNA repair, gene expression and FU (5-fluorouracil)-mediated cytotoxicity.
منابع مشابه
SIRT1 deacetylates APE1 and regulates cellular base excision repair
Apurinic/apyrimidinic endonuclease-1 (APE1) is an essential enzyme in the base excision repair (BER) pathway. Here, we show that APE1 is a target of the SIRTUIN1 (SIRT1) protein deacetylase. SIRT1 associates with APE1, and this association is increased with genotoxic stress. SIRT1 deacetylates APE1 in vitro and in vivo targeting lysines 6 and 7. Genotoxic insults stimulate lysine acetylation of...
متن کاملFunctionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation
BACKGROUND Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOd...
متن کاملSUMO Modification: Wrestling with Protein Conformation
SUMO modification of human thymine-DNA glycosylase facilitates the processing of base excision repair substrates by an unusual mechanism: while leaving the catalytic center unaffected, it induces product release by eliciting a conformational change in the enzyme.
متن کاملElevated level of acetylation of APE1 in tumor cells modulates DNA damage repair
Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which ...
متن کاملCrystal structure of a thwarted mismatch glycosylase DNA repair complex.
The bacterial mismatch-specific uracil-DNA glycosylase (MUG) and eukaryotic thymine-DNA glycosylase (TDG) enzymes form a homologous family of DNA glycosylases that initiate base-excision repair of G:U/T mismatches. Despite low sequence homology, the MUG/TDG enzymes are structurally related to the uracil-DNA glycosylase enzymes, but have a very different mechanism for substrate recognition. We h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 456 1 شماره
صفحات -
تاریخ انتشار 2013